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SUMMARY

In this paper, an algorithm for chemical non-equilibrium hypersonic flow is developed based on the concept
of energy relaxation method (ERM). The new system of equations obtained are studied using finite volume
method with Harten–Lax–van Leer scheme for contact (HLLC). The original HLLC method is modified
here to account for additional species and split energy equations. Higher order spatial accuracy is achieved
using MUSCL reconstruction of the flow variables with van Albada limiter. The thermal equilibrium is
considered for the analysis and the species data are generated using polynomial correlations. The single
temperature model of Dunn and Kang is used for chemical relaxation. The computed results for a flow
field over a hemispherical cylinder at Mach number of 16.34 obtained using the present solver are found
to be promising and computationally (25%) more efficient. The present solver captures physically correct
solution as the entropy conditions are satisfied automatically during the computations. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the critical issues of re-entry aerothermodynamics is that air flows usually experience
high-temperature gradients due to their high stagnation enthalpy. For instance, the deceleration
from hypersonic to subsonic regime through a strong bow shock increases static temperature to
several thousand degree Kelvin. These temperature levels are sufficiently high to cause oxygen
and nitrogen dissociation and excitation of the internal energy degrees of the gas [1–3]. This leads
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to significant deviations from the assumption of calorically perfect gas and affects the correct
prediction of temperature for the aerodynamic and thermal loadings on the surface of a hypersonic
vehicle. As a consequence, accurate physical models and numerical codes are needed to simulate
these complex phenomena and their mutual interactions. In all these models, air is represented by a
mixture of atomic and diatomic perfect gases, each species being identified by its mass fraction and
its proper internal energy structure. A crucial point in modelling and computing these high-speed
flows is to know how fast thermal and chemical relaxation scales are compared to fluid dynamic
scales to determine the nature of the studied flow field i.e. whether it is a frozen, equilibrium
state, or non-equilibrium state. Non-equilibrium processes occur in a flow when the time required
in adapting itself to local conditions is of the same order as the transit time across the region. If
the accommodation time is very short compared to transit time then the process is in equilibrium,
and if it is too long then the process is frozen. In the present studies, the accommodation time
is comparable with the transient time, hence the gas is considered to be in the state of chemical
non-equilibrium. The related gas and chemistry models are explained here. The system of equations
needs to be supported with a closure equation i.e. equation of state. In case of non-equilibrium
flows, equation of state is nonlinear. The upwind solver developed and evolved for perfect gas is
based on the linear equation of state. These perfect gas solvers are extended to non-equilibrium
flows [4–6]. They are roughly divided into two families. In the first family [4, 5] an equivalent �
approach is utilized, trying in some way to remain in perfect gas framework by making suitable
approximation. The algorithm of second family [6] instead, follows a more consistent approach
by including the pressure derivative term in Jacobian matrix exactly. This latter procedure leads to
the definition of average states based on sound theoretical background than the former. However,
this increases the complexity in implementation and also an increase in computational time.

The new approach based on the energy relaxation method (ERM) allows one to use the robust
upwind solvers for perfect gases to real gases with exact equation of state. This reduces the
complexities in implementation as there are no derivative terms in Jacobians and improves the
accuracy by avoiding the approximation in �. The ERM approach for inviscid real gas frozen
flows is well explained by Coquel and Perthame [7] and the details are given in Reference [8] for
viscous flows. The application of ERM for the frozen flow are given in References [8–12]. Here,
an attempt has been made for the first time to use the ERM with Harten–Lax–van Leer scheme
for contact (HLLC) for the non-equilibrium flow analysis.

The paper stresses the mathematical aspects of entropy condition and viscous relaxation for the
non-equilibrium flows. The development of numerical solver which satisfies the entropy condition,
minimizes the approximation in equation of state and reduces the diffusion as well as computational
time is the core theme. The results of the analysis for flow over the hemispherical cylinder are
explained. The results from the present HLLC–ERM solver are compared with those from a
commercial code called INtegrated Computer Algorithm (INCA) [13] using a conventional solver
of Harten–Yee.

2. FLOW GOVERNING EQUATIONS

The axisymmetric viscous continuum flow of fluid in chemical non-equilibrium and thermal equi-
librium is modelled by Navier–Stokes equations in integral form

�
�t

∫ ∫ ∫
Vol

U dVol +
∫ ∫

S
(Finv + Fdiff) · n dS=

∫ ∫ ∫
Vol

(Hinv + Hdiff + Hneq) dVol (1)
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The vectors are given as,

U = r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N2

�O2

�NO

�N

�O

�u

�v

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Finv · n= r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N2
Vn

�O2
Vn

�NOVn

�NVn

�OVn

�uVn + pnx

�vVn + pny

(E + p)Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fdiff·n= r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N2
V d
nN2

�O2
V d
nO2

�NOV
d
nNO

�NV
d
nN

�OV
d
nO

vsterm1

vsterm2

enterm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hinv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

p

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Hdiff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

−2

3
(�l + �t )

(
2
v

r
−
(

�u
�x

+ �v

�y

))

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Hneq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇N2

�̇O2

�̇NO

�̇N

�̇O

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

vsterm1=
[
�xxnx + �xyny + 2

3
(�l + �t )

v

r
nx

]

vsterm2=
[
�yxnx + �yyny + 2

3
(�l + �t )

v

r
ny

]

enterm=
[
(�xxu + �xyv + qx + qdx )nx + (�yxu + �yyv + qy + qdy )ny

+ 2

3
(�l + �t )

v

r
(unx + vny)

]
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�xx = −2

3
(�l + �t )

(
2
�u
�x

− �v

�y

)

�yy = −2

3
(�l + �t )

(
−�u

�x
+ 2

�v

�y

)

�xy = −(�l + �t )

(
�u
�y

+ �v

�x

)

qx = −(�l + �t )
�T
�x

, qy = − (�l + �t )
�T
�y

qdx = −
NS∑
s=1

�Ds
�Xs

�x
hs, qdy = −

NS∑
s=1

�Ds
�Xs

�y
hs

uds = − �

�s
Ds

�Xs

�x
, vds = − �

�s
Ds

�Xs

�y

E = �(� + 0.5(u2 + v2))

(2)

The system is completed by a relation for density,

�=
NS∑
s=1

�s (3)

2.1. Thermodynamic model

A global system can be in a non-equilibrium state, but locally can be in thermodynamic equilibrium
at all points in the flow field. The thermal equation of state is obtained using the Dalton’s law for
mixture of gases as

p=
[

NS∑
s=1

�s
Ms

]
R̂T (4)

The thermodynamic properties of air have been computed in the code using the polynomial
correlation [14] in terms of temperature T . The internal energy � is expressed in terms of species
densities �s and temperature T as follows:

�=
NS∑
s=1

[
�s
�

R̂

Ms

(
a6 +

5∑
l=1

als
l
T l − T

)]
(5)

The equation for energy (5) is a nonlinear function of the temperature and is solved using Newton–
Raphson method. The coefficients of polynomial fits, obtained from Reference [14] and the physical
properties are given in Table I.

2.2. Transport properties

For the reacting air Wilke’s law [16] is used to derive the viscosity of a gas mixture in terms of
the viscosity of its individual component species. Wilke’s law is based on kinetic theory and states
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Table I. Physical constants of species [15].
Species M (kg/kmol) �v (K) �d (K) hf (J/kg)

N2 28.0 3390 113 200 0.0
O2 32.0 2270 75 500 0.0
NO 30.0 2740 59 500 2.996×106

N 16.0 — — 3.362×107

O 14.0 — — 1.543×107

Table II. Viscosity curve fit coefficients of individual species Blottner
et al. [17] (� = exp (C) T (A ln T + B); g/cm s).

Species A B C

N2 0.048349 −0.022485 −9.9827
O2 0.038271 0.021076 −9.5986
N 0.0085863 0.6463 −12.581
O 0.020022 0.43094 −11.246
NO 0.042501 −0.018874 −9.6197

that the mixture viscosity �l is approximately

�l =
s=NS∑
s=1

xs�s∑ j=NS
j=1 	s j

(6)

The viscosity of individual species are obtained using Blottner et al. [17] curve fits as a function
of temperature, which are given in Table II.

The species mole fractions can be easily expressed in terms of mass fractions by

xs = CsM

Ms
(7)

where M =∑s=NS
s=1 Ms/Cs and Cs = �s/�

The 	s j term in Equation (6) is defined as

	s j =
[1 + (�s/� j )

1/2(Mj/Ms)
1/4]2

[8(1 + Ms/Mj )]1/2 (8)

with 	ss clearly being equal to unity. The value of 	 js can be efficiently computed from 	s j using
the identity

	 js = 	s j

� j

�s

Ms

M j
(9)
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Table III. Chemical reaction rate coefficients of Dunn–Kang [20] single temperature model.

kf(T ) =CfT
−
f exp( �f

T ) kb(T ) =CbT
−
b exp( �b

T )

Cf(m
3/kmol s) 
f �f Cb(m

6/kmol2 s) 
b �b

Dissociation reaction
N2 + N2 � 2N + N2 4.7×1014 0.5 113 000 2.72×1010 0.5 0
N2 + O2 � 2N + O2 1.9×1014 0.5 113 000 1.1×1010 0.5 0
N2 + NO� 2N + NO 1.9×1014 0.5 113 000 1.1×1010 0.5 0
N2 + N� 2N + N 4.08×1019 1.5 113 000 2.27×1015 1.5 0
N2 + O� 2N + O 1.9×1014 0.5 113 000 1.1×1010 0.5 0
O2 + N2 � 2O + N2 7.2×1015 1.0 59 500 6.0×109 0.5 0
O2 + O2 � 2O + O2 3.24×1016 1.0 59 500 2.7×1010 0.5 0
O2 + NO� 2O + NO 3.6×1015 1.0 59 500 3.0×109 0.5 0
O2 + N� 2O + N 3.6×1015 1.0 59 500 3.0×109 0.5 0
O2 + O� 2O + O 3.9×1017 1.5 75 500 7.5×1010 1.5 0
NO + N2 �N + O + N2 3.9×1017 1.5 75 500 1.0×1014 1.5 0
NO + O2 �N + O + O2 3.9×1017 1.5 75 500 1.0×1014 1.5 0
NO + NO�N + O + NO 7.8×1017 1.5 75 500 2.0×1014 1.5 0
NO + N�N + O + N 7.8×1017 1.5 75 500 2.0×1014 1.5 0
NO + O�N + O + O 7.8×1017 1.5 75 500 2.0×1014 1.5 0

Exchange reaction
N2 + O�NO + N 7.0×1010 0.0 38 000 1.56×1010 0. 0
NO + O�O2 + N 3.2×106 −1.0 19 700 1.3×107 −1.0 3580

Computations can be further simplified by invoking the Herning and Zipperer [15] approximation

	s j =
√

Mj

Ms
(10)

The conductivity of the species is computed from the species viscosity using the Eucken formula

�s = �s(5/2cv,t s + cv,rs + cv,ves ) (11)

The mixture conductivity from the Wilke’s formula,

�l =
s=NS∑
s=1

xs�s∑ j=NS
j=1 	s j

(12)

The species diffusion coefficient is calculated using an expression of Lee [18],

Ds = (Ms/M)(1 − Cs)D

1 − Xs
(13)

The diffusion coefficient D is calculated from a specified Schmidt number Sc, D = �/�Sc. The
value of Schmit number used is 1.0 for all species.

The turbulent flows are modelled with an algebraic model of Baldwin and Lomax [19].
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2.3. Kinetic model

The different kinetic models being used are based on single temperature and two temperature with
five, seven and 11 species based on the flow environment. The single temperature models of Dunn
and Kang [20] and Park [3] are most commonly used. Here, the five species Dunn and Kang model
with single temperature [20, 21] is used and is given in Table III. The forward and backward rates
are estimated based on the translation–rotational temperature using the Arrhenius law.

3. ENERGY RELAXATION METHOD

The system of equations (1) is supplemented by the equation of state p= p(�, �). In such a general
case, the non-linearities involved in the pressure law p(�, �) strongly influence the flow dynamics.
As a result, significant difficulties arise in the numerical solution of the Navier–Stokes equations.
The aim of the energy relaxation theory [7] is to bypass these difficulties while preserving the
correct flow dynamics. The main idea is to consider an energy splitting in the form � = �1 + �2 in
order to relax the non-linearities in the pressure law. Here, the internal energy �1 is governed by a
simple pressure law, typically a polytropic law while �2 stands for the disturbing non-linearities,
which is simply advected by the flow. In viscous flow computations, in addition to the internal
energy splitting, corresponding conduction heat flux q is split into q1 governed by T1, and q2,
which is advected by the flow. One seeks a pressure law of polytropic ideal gas and an internal
energy �(�, �1), so that the initial system (1) and its associated entropy inequality can be recovered
in the limit of an infinite relaxation rate (i.e. � → +∞) from the following system:

�
�t

∫ ∫ ∫
Vol

U�
1 dVol +

∫ ∫
S
(F1, inv + F1,diff + FERM)� · n dS

=
∫ ∫ ∫

Vol
(H1, inv + H1,diff + H1,neq)

� dVol (14)

The vectors are given as

U1 = r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N2

�O2

�NO
�N
�O
�u

�v

E1

��2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F1, inv·n= r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N2
Vn

�O2
Vn

�NOVn
�NVn
�OVn

�uVn+p1nx
�vVn+p1ny
(E1+p1)Vn

��2Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F1,diff·n= r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N2
V d
nN2

�O2
V d
nO2

�NOV
d
nNO

�NV
d
nN

�OV
d
nO

vsterm1

vsterm2

enterm

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FERM·n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

P1

−P1−P2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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H1, inv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

p

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H1,diff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

−2

3
(�l+�t )

(
2
v

r
−
(

�u
�x

+ �v

�y

))

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H1,neq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇N2

�̇O2

�̇NO

�̇N

�̇O

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

vsterm1=
[
�xxnx + �xyny + 2

3
(�l + �t )

v

r
nx

]

vsterm2=
[
�yxnx + �yyny + 2

3
(�l + �t )

v

r
ny

]

enterm=
⎡
⎢⎣

(�xxu + �xyv + q1x + qdx )nx + (�yxu + �yyv + q1y + qdy )ny

+2

3
(�l + �t )

v

r
(unx + vny)

⎤
⎥⎦

(15)

P1 = �((�xxu + �xyv − q1x − qdx )nx + (�yxu + �yyv − q1y − qdy )ny

− ��[�2 − �(�, �1)])
P2 = −
(q2x nx + q2y ny), q1 = −�∇T1, q =−�∇�, q2 = q − q1

E1 = �(�1 + 0.5(u2 + v2))

Note that the energy equation in (1) is splitted into two equations in (14). For a general pressure
law, this system (14) is a mathematical artifice, but it appears naturally in high-temperature
thermodynamics [7]. The original Navier–Stokes system (1) will thus be recovered from (14) in
the limit � → +∞ provided that � verifies,

�= �1 + �(�, �1), p(�, �1 + �(�, �1))= p1(�, �1) = (�1 − 1)��1 (16)

since in this limit �2 =�(�, �1).

P1 = �
(
(�xxu + �xyv − q1x − qdx )nx + (�yxu + �yyv − q1y − qdy )ny

)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1473–1494
DOI: 10.1002/fld



ERM FOR CHEMICAL NON-EQUILIBRIUM FLOW COMPUTATIONS 1481

The consistency conditions (16) are thus fulfilled for any given choice of �1 (with a value of �1>1).
In addition to the conservation system (16), it is also required to recover the entropy inequality at
equilibrium. The required characterization of the admissible �1 is given as

�1 > sup
�, �

�(�, �) where �(�, �) = 1 + p, �

�

�1 > sup
�, �

�(�, �) where �(�, �) = �

p
p,� + p, �

�

(17)

Condition (17) can be regarded as a subcharacteristic condition. It means that the sound speed
for internal energy �1 must be greater than the real sound speed in the fluid, while the energy
splitting may seem natural and simple. The appropriate value of �1 has to be selected, higher
values cause higher dissipation. In the present case, entropy condition is implemented in such a
way that it automatically drives the permissible �1 for the real gas.

3.1. Equation of state

The non-equilibrium ERM is formulated with each species as thermally perfect gas. The total
internal energy is the sum of the energy of each species. The entropy condition (17) is satisfied
by computing the derivative of pressure with density and energy from the thermodynamic model.
The entropy condition and relaxation parameters used are

p,� =
NS∑
s=1

RsT (�), p, � = R�

�′(T (�))
, � = (�1 − �(T ))

(�1 − 1)
, 
 = 1.0, �= T (18)

where

�′(T (�))=
NS∑
s=1

[
�s
�

R̂

Ms

(
5∑

l=1
alsT

l−1 − 1

)]

The entropy condition is applied at each cell and the maximum value of the polytropic index
is chosen for the next time level computation. This avoids manual interference to check entropy
violation during the computation.

4. NUMERICAL IMPLEMENTATION

This system of equations (14) is solved using the finite volume method on a structured grid. The
time integration is carried out using the Runge–Kutta scheme [22]. The original HLLC solver of
Batten et al. [23] is modified to account for species and split energy equation [11] and is used
to compute inviscid fluxes. The higher order accuracy is achieved with MUSCL [24] approach of
variable reconstruction and modified van Albada limiter [25]. The diffusion fluxes are computed
in a central differencing manner [26].

The procedure to solve the Navier–Stokes system (1) within the framework of the energy
relaxation theory is the following. Given the numerical equilibrium solution at the time
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level tn ,

Un =

⎡
⎢⎢⎢⎣

�

�u

�v

E(�)

⎤
⎥⎥⎥⎦
n

(19)

the approximation is advanced to the next time level tn+1 = tn + �t in two steps [8].
1. First step (relaxation):

The two internal energies �n1, �n2 and temperature T n
1 are obtained from the consistency condition

(16)

�n1 = p(�, �)n

(�1 − 1)�n
(20)

�n2 = �n − �n1 (21)

T n
1 = (�1 − 1)�n1/R (22)

Then, the field vector Un
1 is given as

Un
1 =

⎡
⎢⎢⎢⎢⎢⎣

�

�u

�v

E1

��2

⎤
⎥⎥⎥⎥⎥⎦

n

(23)

The gas temperature (T ) is used to compute the transport properties and reaction rates, since the
terms related to them in energy transport are relaxed through �.

2. Second step (evolution in time):
In this step, for tn�t<t (n+1) the Cauchy problem is solved for relaxation system,

�
�t

∫ ∫ ∫
Vol

U1 dVol +
∫ ∫

S
(F1, inv + F1,diff + FERM) · n dS

=
∫ ∫ ∫

Vol
(H1, inv + H1,diff + H1,neq) dVol (24)

with the initial data Un
1 given in (23) and we obtain intermediate solution vector at time t (n+1)− ,

U(n+1)−
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u

�v

E1

��2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)−

(25)
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At last, we compute the equilibrium solution Un+1 at time tn+1 by

Un+1 =

⎡
⎢⎢⎢⎢⎢⎣

�

�u

�v

(E1 + ��2)

⎤
⎥⎥⎥⎥⎥⎦

n+1−

(26)

4.1. Higher order reconstruction for inviscid fluxes with modified van Albada limiter

Large number of grids are required near the wall to resolve the entropy and shock layers. This
grid needs clustering near the wall, which introduces large variations in spacing. To account for
it, Johnston [27] proposed new modifications to the van Albada limiter, which are used here.

Accounting for the width of cell i , denoted by hi , the one-sided reconstruction equation [27]
with limiting becomes

UL
1,i+1/2 =U1,i + 1

4hi si [(1 − �si )��
i + (1 + �si )�⊕

i ] (27)

UR
1,i+1/2 =U1,i+1 − 1

4hi+1si+1[(1 − �si+1)�⊕
i+1 + (1 + �si+1)��

i+1] (28)

with �=−1. The downstream and upstream gradients at cell ‘i’ are defined as

��
i = 2�−

i

hi + hi−1
, �−

i =U1i − U1i−1 (29)

�⊕
i = 2�+

i

hi + hi+1
, �+

i =U1i+1 − U1i (30)

and ‘si ’ is TVB limiter function given as

si = 2(�⊕
i ��

i ) + �

(�⊕
i )2 + (��

i )2 + �
(31)

The parameter � is introduced to avoid division by zero, and is set slightly higher than machine
precision (� = 1 × 10−12).

4.1.1. HLLC relaxed solver: The HLLC scheme of Batten et al. [23] is modified [11] to take
care of ERM formulation for the inviscid part of the fluxes. The HLLC fluxes at the interface are
defined as

F1(UL
1 ,UR

1 ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F1(UL
1 ) if SL>0

F1(UL∗
1 ) if SL�0<Sm

F1(UR∗
1 ) if Sm�0�SR

F1(UR
1 ) if SR<0

(32)
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where

UL∗
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�L
∗

N2

�L
∗

O2

�L
∗

NO

�L
∗

N

�L
∗

O

(�u)L
∗

(�v)L
∗

EL∗
1

(��2)
L∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=�L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�LN2
(SL − V L

n )

�LO2
(SL − V L

n )

�LNO(SL − V L
n )

�LN(SL − V L
n )

�LO(SL − V L
n )

(�u)L(SL − V L
n ) + (p∗

1 − pL1 )nx

(�v)L(SL − V L
n ) + (p∗

1 − pL1 )ny

EL
1 (SL − V L

n ) − pL1 V
L
n + p∗

1S
m

(��2)
L(SL − V L

n )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�L = (SL − Sm)−1

p∗
1 = �L(V L

n − SL)(V L
n − Sm) + pL1

(33)

For right state star variables ‘L’ in the above equation is replaced with ‘R’. The intermediate wave
speed is given as

Sm = [�RV R
n (SR − VR

n ) − �LV L
n (SL − V L

n ) + (pL1 − pR1 )]
�R(SR − V R

n ) − �L(SL − V L
n )

and SL, SR are taken from Einfeldt et al. [28],
SL = min[�1(UL), �1(U

Roe)], SR = max[�m(UR), �m(URoe)]
with �1(URoe) and �m(URoe) being smallest and largest eigenvalues of the Roe average matrix.

4.2. Diffusive fluxes

The diffusive fluxes in Equation (1) consists of viscous stresses and heat conduction. They involve
derivatives of the flow variables with respect to Cartesian coordinates, which are computed in a
central difference manner [26]. The procedure is explained below for estimating the derivatives of
temperature at interface (i + 1/2, j),

⎛
⎜⎜⎜⎝

�T
�x

�T
�y

⎞
⎟⎟⎟⎠

i+1/2, j

=

⎛
⎜⎜⎜⎝

�x
��

�y
��

�x
�


�y
�


⎞
⎟⎟⎟⎠

−1

i+1/2, j

⎛
⎜⎜⎜⎝

�T
��

�T
�


⎞
⎟⎟⎟⎠

i+1/2, j

(34)
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The derivatives of the temperature with respect to the curvilinear coordinates are given as

�T
�� i+1/2, j

=[Ti+1, j − Ti, j ]

�T
�
 i+1/2, j

=[Ti+1, j+1 − Ti+1, j−1 + Ti, j+1 − Ti, j−1]/2
(35)

In a similar manner, derivatives of other variables at the interface (i, j + 1/2) are obtained.

4.3. Production term computation

In order to analyse the chemical non-equilibrium effects in high-temperature air flows without
ionization, five species N2, O2, NO, N, and O are commonly considered [29]. The chemical
reactions that occur are considered to be significant for non-equilibrium gas dynamic calculations
and they are given as

N2 + M �kf, 1M
kb, 1M

2N + M

O2 + M �kf, 2M
kb, 2M

2O + M

NO + M �kf, 3M
kb, 3M

N + O + M

N2 + O �kf, 4
kb, 4

NO + N

NO + O �kf, 5
kb, 5

O2 + N

(36)

The first three reactions are dissociation recombination reactions. Here, M denotes a third body
given by any of the reactants present. This body is used to absorb any excess energy in the collision
process. The remaining reactions involving NO are bimolecular exchange reactions, also called
shuffle reactions. The total number of reactions are 17, the reactions are written in such a way that
forward reactions are endothermic which results in a decrease in temperature as the radicals are
produced. The forward–backward reaction rate equations are

R1 =∑
M

[
−kf,1M

�N2

MN2

�M

MM
+ kb,1M

[
�N
MN

]2 �M

MM

]

R2 =∑
M

[
−kf,2M

�O2

MO2

�M

MM
+ kb,2M

[
�O
MO

]2 �M

MM

]

R3 =∑
M

[
−kf,3M

�NO
MNO

�M

MM
+ kb,3M

�N

MN

�O
MO

�M

MM

]

R4 = −kf,4
�N2

MN2

�O
MO

+ kb,4
�N
MN

�NO
MNO

R5 = −kf,5
�O
MO

�NO
MNO

+ kb,5
�N

MN

�O2

MO2

(37)
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The forward and backward reaction rate coefficients are determined as functions of temperature
and are explained in Table III. Hence, the source terms which represent the interspecies mass
transfer rates can be constructed as

�̄N2 = MN2(R1 + R4)

�̄O2 = MO2(R2 − R5)

�̄NO = MNO(R3 − R4 + R5)

�̄N = MN(−2R1 − R3 − R4 − R5)

�̄O = MO(−2R2 − R3 + R4 + R5)

(38)

4.4. Boundary conditions

All the boundary conditions are implemented with dummy cells at the boundaries. Since the flow is
supersonic at the upstream, all flow variables are specified based on free stream conditions, whereas
zero flow gradients are specified at the downstream. The wall is treated as no slip non-catalytic at
constant temperature.

4.5. Algorithm

The following are the steps adopted in the algorithm.
Step 1: Initialization of solution with all variables (time= tn).
Step 2: Computation of time step which is minimum of inviscid and viscous time scales.
Step 3: Entropy condition check. In this step maximum value of �1 is selected among the values

of specific heat ratio’s (�, �) while satisfying the entropy condition.
Step 4: Relaxation. In this step the energy relaxation parameters like the split energy and

temperature are computed from the global energy, pressure, and �1 using consistency
condition.

Step 5: Reconstruction of variables at the cell face.
Step 6: Computation of the inviscid and diffusive fluxes.
Step 7: Computation of production rates.
Step 8: Computation of source terms.
Step 9: Estimate of the change in flow variables.
Step 10: Update the solution for next stage of time integration.
Step 11: Recover the global energy from the splitted energies.
Step 12: Steps 3–11 repeated twice with solution from step 11.
Step 13: Solution at final time step (time= tn+1).

5. RESULTS

The ERM solver is used for simulation of viscous laminar chemical non-equilibrium and thermal
equilibrium flows over the hemispherical cylinder geometry of 38.1 mm radius. The free stream
flow conditions are Mach number 16.34, pressure 82.176 Pa, temperature 52.2 K, and the wall
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Figure 1. Heat flux on hemispherical cylinder as function of first grid spacing.

temperature is 294.4K. The five species Dunn and Kang chemistry model is used. Analysis is also
carried out using the commercial code INCA with Harten–Yee solver [13] with Vinokur approach
to compare the results with the present ERM solver.

A flow domain of varying upstream boundary, 1
2 times the radius at symmetry plane to 2 times

radius at the end of the hemispherical cylinder is considered. The body-fitted grids of different
sizes are generated. A grid clustering is used to have large number of grids close to body in
order to resolve flow gradients. Analysis is carried for various grid sizes and first cell spacing in
order to have different grid Reynold number. The heat flux for various grid spacing is shown in
Figure 1. It is observed that the heat flux is highly sensitive to the stagnation grid cell spacing
i.e. grid cell Reynolds number. If the grid Reynolds number is very small the heat flux is very
high. The heat flux is also computed using Fay–Riddell method and compared with that obtained
from the present solver using various grid spacings. Heat flux obtained with 183 �m as first grid
spacing for grid sizes of 51× 51 and 101× 101 compares well with Fay–Riddell. The effect of
grid spacing on the surface pressure is shown in Figure 2. The pressure coefficient compares
well for coarse and medium grid. Here, the results are presented for the grid of 101× 101 size
(as shown in Figure 3) with first grid spacing of 183 �m. The convergence history is shown in
Figure 4. The log of momentum residual is reduced from 1 to −3.21. The computational time
required on the SUN-Ultra machine is 25% lower for present solver than the commercial code.
Figure 5 shows the specific heat ratio contour around the hemispherical cylinder obtained from
the present ERM solver. The specific heat ratio varies from 1.33 to 1.4. This indicates that the
specific heat ratio is a function of temperature for the non-equilibrium flows and is taken care
automatically by the solver with the choice the maximum value of gamma that satisfies the entropy
condition (17). The other flow variables are well captured. The species concentration and the flow
variables compare well with those obtained from the commercial solver INCA. Figure 6 shows

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1473–1494
DOI: 10.1002/fld



1488 M. M. PATIL, J. C. MANDAL AND S. SWAMINATHAN

Polar angle (deg)

C
p

0 40 80
0

0.5

1

1.5

2
cell spacing 251 micron

cell spacing 183 micron

Figure 2. Coefficient of pressure on hemispherical cylinder as function of first grid spacing.
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Figure 3. Body-fitted grid of 101× 101 size about hemispherical cylinder.

the coefficient of pressure distribution over the surface. The computed surface pressure with the
present ERM formulation matches well with the INCA results using Harten–Yee formulation with
Vinokur equivalent gamma approach [6]. Figure 7 shows the heat flux over the hemispherical
cylinder. The computed heat flux peak value of 83.0W/cm2 matches well with the analytical value
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Figure 4. Convergence history of flow simulation about hemispherical cylinder.
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Figure 5. Specific heat ratio contours about hemispherical cylinder at M = 16.34.

estimated using Fay and Riddell method. The heat flux reduces to value of 62.5W/cm2 within short
distance and follows a smooth variation along the surface. The variation is similar to that observed
commonly in literature for hemispherical cylinder. The computational time for ERM solver is found
to be lower than the conventional solvers in spite of solving additional equations arising in ERM
formulation.
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Figure 6. Surface pressure coefficient distribution on hemispherical cylinder at M = 16.34.
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Figure 7. Cold wall heat flux distribution on hemispherical cylinder at M = 16.34.

6. CONCLUSIONS

An algorithm for chemical non-equilibrium hypersonic flow is developed using ERM. The new
set of equations are then solved using a modified HLLC solver to consider the additional species
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and split energy equations arising in ERM formulation. The chemical relaxation is implemented
using five species Dunn and Kang single temperature model. The solver is applied to the extreme
complex flow environment of very high speed (M = 16.34). The computed results from the present
solver compare well with the INCA computations. The solver based on ERM has an advantage
of entropy condition being satisfied automatically by the constraint imposed on the choice of
admissible gamma.

NOMENCLATURE

a speed of sound (m/s)
C mass concentration
Cp coefficient of pressure/specific heat at constant pressure (J/kgK)
Cv specific heat at constant volume (J/kgK)
d differential operator
D diffusion coefficient
E total energy (N/m2)

F flux vector
GRN grid Reynolds number
H source vector
h enthalpy/cell face centre distance
k reaction rate
M Mach number/third body in reaction
M molecular weight of species
n unit normal vector
NS number of species
NR number of reactions
NCW non-catalytic wall
p pressure (N/m2)

p, � derivative of pressure with respect to internal energy
p,� derivative of pressure with respect to density
q heat flux
r local radius
R gas constant (J/kgK)
R̂ universal gas constant (J/kgmolK)
S surface area (m2)

S wave speed in HLLC (m/s)
t time (s)
T temperature (K)
u x-component of velocity (m/s)
U conserved variable vector
V velocity (m/s)
Vol volume (m3)

v y-component of velocity (m/s)
ẇ mass source term for species
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Greek symbols

� coefficient for accounting the contribution of viscous dissipation
and diffusion contribution to balance the energy term

� global temperature of relaxed system
� temperature (K)

 coefficient for heat flux relaxation
� coefficient of viscosity (Ns/m2)

� stress tensor (N/m2)

� coefficient of conductivity
� angle of attack (deg.)
� density (kg/m3)

� specific heat ratio
�1 specific heat ratio corresponding to �1 (gamma1)
� relaxation rate
	 internal energy function
� internal energy (m2/s2)
�1 internal energy governed by the polytropic law (m2/s2)
�2 internal energy advected in the flow (m2/s2)
� partial differential operator

, � coordinates in transformed plane corresponding to x and y

Subscripts

1 parameters corresponding to �1
b backward
d dissociation
diff diffusive
ERM energy relaxation method terms
f forward
l laminar
inv inviscid
i, j cell index number along x , y, respectively
neq non-equilibrium
n unit normal component
N atomic nitrogen
N2 nitrogen
NO nitrogen oxide
O2 oxygen
O atomic oxygen
r rotational
s species
t turbulent/translational
v vibrational
ve vibrational electronic
x x-component
y y-component
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Superscripts

d diffusion
f formation
L left state variable
R right state variable
n time step
T transpose
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